import numpy as np
import pandas as pdDataset
- Yelp reviews about restaurants.
- 1- and 2-star ratings are classified as “negative”
- 3- and 4-star ratings are are “positive”
- 560K training samples, 38K testing samples. We are using 10% here.
data_root = "../../PyTorchNLPBook/data/yelp"df = pd.read_csv(data_root + "/reviews_with_splits_lite.csv")
df| rating | review | split | |
|---|---|---|---|
| 0 | negative | terrible place to work for i just heard a stor... | train |
| 1 | negative | hours , minutes total time for an extremely s... | train |
| 2 | negative | my less than stellar review is for service . w... | train |
| 3 | negative | i m granting one star because there s no way t... | train |
| 4 | negative | the food here is mediocre at best . i went aft... | train |
| ... | ... | ... | ... |
| 55995 | positive | great food . wonderful , friendly service . i ... | test |
| 55996 | positive | charlotte should be the new standard for moder... | test |
| 55997 | positive | get the encore sandwich ! ! make sure to get i... | test |
| 55998 | positive | i m a pretty big ice cream gelato fan . pretty... | test |
| 55999 | positive | where else can you find all the parts and piec... | test |
56000 rows × 3 columns
The dataset has been separated into ‘test’, ‘train’, and ‘val’ splits.
df.split.unique()array(['train', 'val', 'test'], dtype=object)
The review column text has been processed to - make the text lowercase - adding spaces before and after the punctuations - replacing all other symbols with spaces
from torch.utils.data import Datasetclass Vocabulary(object):
def __init__(self, token_to_idx=None, add_unk=True, unk_token='<UNK>'):
if token_to_idx is None:
token_to_idx = {}
self._token_to_idx = token_to_idx
# create the inverse mapping
self._idx_to_token = { idx : token for token, idx in \
self._token_to_idx.items() }
self._add_unk = add_unk
self._unk_token = unk_token
self.unk_index = -1
if add_unk:
self.unk_index = self.add_token(unk_token)
def add_token(self, token):
""" Add a token to mappings and return it's index. """
if token in self._token_to_idx:
index = self._token_to_idx[token]
else:
index = len(self._token_to_idx)
self._token_to_idx[token] = index
self._idx_to_token[index] = token
return index
def lookup_token(self, token):
""" Get the index corresponding to a token """
if self._add_unk:
return self._token_to_idx.get(token, self.unk_index)
else:
return self._token_to_idx[token]
def lookup_index(self, index):
""" Get the token corresponding to an index. """
if index not in self._idx_to_token:
raise KeyError("the index (%d) is not in the Vocabulary" %index)
return self._idx_to_token[index]
def __len__(self):
return len(self._token_to_idx)
def __str__(self):
return "<Vocabulary(size=%d)>" %len(self)
def to_serializable(self):
return {
'token_to_idx': self._token_to_idx,
'add_unk': self._add_unk,
'unk_token': self._unk_token
}
@classmethod
def from_serializable(cls, contents):
return cls(**contents) import numpy as np
import string
from collections import Counterstring.punctuation'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'
class ReviewVectorizer(object):
def __init__(self, review_vocab, rating_vocab):
self.review_vocab = review_vocab
self.rating_vocab = rating_vocab
def vectorize(self, review):
""" Returns a collapsed one-hot vector for a given review. """
one_hot = np.zeros(len(self.review_vocab), dtype = np.float32)
for token in review.split(" "):
if token not in string.punctuation:
index = self.review_vocab.lookup_token(token)
one_hot[index] = 1
return one_hot
@classmethod
def from_dataframe(cls, review_df, cutoff=25):
review_vocab = Vocabulary(add_unk=True)
rating_vocab = Vocabulary(add_unk=False)
# Add ratings
for rating in sorted(set(review_df.rating)):
rating_vocab.add_token(rating)
word_counts = Counter()
for review in review_df.review:
for word in review.split(" "):
if word not in string.punctuation:
word_counts[word] += 1
for word, count in word_counts.items():
if count > cutoff:
review_vocab.add_token(word)
return cls(review_vocab, rating_vocab)
def to_serializable(self):
return {
'review_vocab': self.review_vocab.to_serializable(),
'rating_vocab': self.rating_vocab.to_serializable()
}
@classmethod
def from_serializable(cls, contents):
review_vocab = Vocabulary.from_serializable(contents['review_vocab'])
rating_vocab = Vocabulary.from_serializable(contents['rating_vocab'])
return cls(review_vocab, rating_vocab)class ReviewDataset(Dataset):
def __init__(self, review_df, vectorizer):
self.review_df = review_df
self._vectorizer = vectorizer
self.train_df = self.review_df[self.review_df.split == 'train']
self.val_df = self.review_df[self.review_df.split == 'val']
self.test_df = self.review_df[self.review_df.split == 'test']
self.train_size = len(self.train_df)
self.val_size = len(self.val_df)
self.test_size = len(self.test_df)
self._lookup_dict = {
'train': (self.train_df, self.train_size),
'val': (self.val_df, self.val_size),
'test': (self.test_df, self.test_size)
}
self.set_split('train')
@classmethod
def load_dataset_and_make_vectorizer(cls, review_csv):
"""Load dataset and make a new vectorizer from scratch.
Args:
review_csv (str): location of the dataset
Returns:
an instance of ReviewDataset
"""
review_df = pd.read_csv(review_csv)
return cls(review_df, ReviewVectorizer.from_dataframe(review_df))
def get_vectorizer(self):
return self._vectorizer
def set_split(self, split='train'):
self._target_split = split
self._target_df, self._target_size = self._lookup_dict[split]
def __len__(self):
return self._target_size
def __getitem__(self, index):
row = self._target_df.iloc[index]
review_vector = \
self._vectorizer.vectorize(row.review)
rating_index = \
self._vectorizer.rating_vocab.lookup_token(row.rating)
return {'x_data': review_vector,
'y_target': rating_index}
def get_num_batches(self, batch_size):
return len(self) // batch_sizefrom torch.utils.data import DataLoaderdef generate_batches(dataset, batch_size, shuffle=True,
drop_last = True, device="cpu"):
"""
A minibatch generator function which wraps the PyTorch DataLoader.
It will ensure each tensor is on the right device.
"""
dataloader = DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=shuffle,
drop_last=drop_last)
for data_dict in dataloader:
out_data_dict = {}
for name, tensor in data_dict.items():
out_data_dict[name] = data_dict[name].to(device)
yield out_data_dictimport torch.nn as nn
import torch.nn.functional as Fclass ReviewClassifier(nn.Module):
def __init__(self, num_features):
"""
Args:
num_features (int): the size of the input feature vector
"""
super(ReviewClassifier, self).__init__()
self.fcl = nn.Linear(in_features=num_features,
out_features=1)
def forward(self, x_in, apply_sigmoid=False):
y_out = self.fcl(x_in).squeeze()
if apply_sigmoid:
y_out = F.sigmoid(y_out)
return y_outfrom argparse import Namespaceargs = Namespace(
# Data and path information
frequency_cutoff = 25,
model_state_file = 'model.pth',
review_csv = data_root + "/reviews_with_splits_lite.csv",
save_dir = ".",
# No model hyperparams
# Training hypereparams
batch_size=128,
early_stopping_criteria=5,
learning_rate=0.001,
num_epochs=15,
seed=1337,
cuda=True
)import torch.optim as optimdef make_train_state(args):
return {
'epoch_index': 0,
'train_loss': [],
'train_acc': [],
'val_loss': [],
'val_acc': [],
'test_loss': -1,
'test_acc': -1,
}train_state = make_train_state(args)import torchif not torch.cuda.is_available():
args.cuda = Falseargs.cudaTrue
args.device = torch.device("cuda" if args.cuda else "cpu")args.devicedevice(type='cuda')
dataset = ReviewDataset.load_dataset_and_make_vectorizer(args.review_csv)
vectorizer = dataset.get_vectorizer()classifier = ReviewClassifier(num_features=len(vectorizer.review_vocab))
classifier = classifier.to(args.device)loss_func = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(classifier.parameters(), lr = args.learning_rate)def compute_accuracy(pred, target):
return ((target - pred) / target).sum()compute_accuracy(np.zeros(10), np.ones(10))10.0
# A bare-bones training loop
for epoch_index in range(args.num_epochs):
train_state['epoch_index'] = epoch_index
# Iterate over training dataset
dataset.set_split('train')
batch_generator = generate_batches(dataset,
batch_size=args.batch_size,
device=args.device)
running_loss = 0.0
running_acc = 0.0
classifier.train()
for batch_index, batch_dict in enumerate(batch_generator):
# zero the gradients
optimizer.zero_grad()
# compute the output
y_pred = classifier(x_in=batch_dict['x_data'].float())
# compute the loss
loss = loss_func(y_pred, batch_dict['y_target'].float())
loss_batch = loss.item()
running_loss += (loss_batch - running_loss) / (batch_index + 1)
# compute gradients
loss.backward()
# update params
optimizer.step()
# compute accuracy
acc_batch = compute_accuracy(y_pred, batch_dict['y_target'])
running_acc += (acc_batch - running_acc) / (batch_index + 1)
train_state['train_loss'].append(running_loss)
train_state['train_acc'].append(running_acc)
# Iterate over validation dataset
dataset.set_split('val')
batch_generator = generate_batches(dataset, batch_size=args.batch_size,
device=args.device)
running_loss = 0.0
running_acc = 0.0
classifier.eval()
for batch_index, batch_dict in enumerate(batch_generator):
# compute the output
y_pred = classifier(x_in=batch_dict['x_data'].float())
# compute the loss
loss = loss_func(y_pred, batch_dict['y_target'].float())
loss_batch = loss.item()
running_loss += (loss_batch - running_loss) / (batch_index + 1)
# compute the accuracy
acc_batch = compute_accuracy(y_pred, batch_dict['y_target'])
running_acc += (acc_batch - running_acc) / (batch_index + 1)
train_state['val_loss'].append(running_loss)
train_state['val_acc'].append(running_acc)KeyboardInterrupt:
train_state{'epoch_index': 22,
'train_loss': [0.48078572292343463,
0.32938406645667323,
0.27444523850492386,
0.24338128739127932,
0.22270150414479334,
0.20760727328023101,
0.19577689098766424,
0.18615816270603858,
0.17823111704167202,
0.17131327121865514,
0.1652598268309839,
0.16008958478573887,
0.1552568533354335,
0.15096716351466236,
0.14698867341564376,
0.1434966386874128,
0.14009482598577452,
0.13711761412959464,
0.13425543120289157,
0.13144471408689717,
0.12905195598898375,
0.1264154611800622],
'train_acc': [tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>)],
'val_loss': [0.3827091707633092,
0.3089083020503706,
0.2740706067818864,
0.25343966277746044,
0.2393623280983705,
0.22958406485044042,
0.2229269543519387,
0.21800954869160286,
0.2149605845029538,
0.2100421364490802,
0.20944883227348335,
0.20681792107912217,
0.2058340288125552,
0.2045778891214958,
0.20414738998963283,
0.2039427431730124,
0.2039891733573033,
0.20289532026419277,
0.20320990589948798,
0.20385687832648938,
0.2045557994108934,
0.20566382247668039],
'val_acc': [tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>),
tensor(nan, device='cuda:0', grad_fn=<AddBackward0>)],
'test_loss': -1,
'test_acc': -1}
batch_dict['x_data'].shapetorch.Size([128, 8945])
import gclen(dataset._vectorizer.review_vocab)8945
classifierReviewClassifier(
(fcl): Linear(in_features=8945, out_features=1, bias=True)
)
dataset.set_split('test')
batch_generator = generate_batches(dataset, batch_size=args.batch_size,
device=args.device)
running_loss = 0.0
running_acc = 0.0
classifier.eval()
for batch_index, batch_dict in enumerate(batch_generator):
gc.collect()
y_pred = classifier(x_in = batch_dict['x_data'].float())
loss = loss_func(y_pred, batch_dict['y_target'].float())
loss_batch = loss.item()
running_loss += (loss_batch - running_loss) / (batch_index + 1)
train_state['test_loss'] = running_losstrain_state['test_loss']0.21400380661854376
import redef preprocess_text(text):
text = text.lower()
text = re.sub(r"([.,!?])", r" \1 ", text)
text = re.sub(r"[^a-zA-Z.,!?]+", r" ", text)
return textdef predict_rating(review, classifier, vectorizer, decision_threshold = 0.5):
review = preprocess_text(review)
vectorized_review = torch.tensor(vectorizer.vectorize(review)).cuda()
result = classifier(vectorized_review.view(1, -1))
probability_value = torch.sigmoid(result).item()
index = 1
if probability_value < decision_threshold:
index = 0
return vectorizer.rating_vocab.lookup_index(index)test_review = "this is a pretty awesome book"
prediction = predict_rating(test_review, classifier, vectorizer)
prediction'positive'
fcl_weights = classifier.fcl.weight.detach()[0]_, indices = torch.sort(fcl_weights, dim=0, descending = True)
indices = indices.cpu().numpy().tolist()for i in range(20):
print(vectorizer.review_vocab.lookup_index(indices[i]))delicious
fantastic
pleasantly
amazing
vegas
great
yum
excellent
ngreat
awesome
yummy
perfect
love
bomb
chinatown
deliciousness
solid
notch
hooked
nthank
indices.reverse()
for i in range(20):
print(vectorizer.review_vocab.lookup_index(indices[i]))worst
mediocre
bland
horrible
meh
awful
terrible
rude
tasteless
overpriced
disgusting
slowest
unacceptable
poorly
nmaybe
unfriendly
downhill
disappointing
disappointment
underwhelmed